Selected Safety Information ESMERON®

Name of the medicinal product

ESMERON 50 mg/ 5mL solution for injection for intravenous administration as an injection or infusion

Qualitative and quantitative composition

Each mL Esmeron contains 10 mg rocuronium bromide.

Theapeutic indications

Esmeron is indicated in adult and paediatric patients (from term neonates to adolescents [0 to <18 years]) as an adjunct to general anaesthesia to facilitate tracheal intubation during routine sequence induction and to provide skeletal muscle relaxation during surgery. In adults Esmeron is also indicated to facilitate tracheal intubation during rapid sequence induction and as an adjunct in the intensive care unit (ICU) to facilitate intubation and mechanical ventilation.

Posology and method of administration

Posology

Like other neuromuscular blocking agents, Esmeron should only be administered by, or under supervision of, experienced clinicians who are familiar with the action and use of these drugs.

As with other neuromuscular blocking agents, the dosage of Esmeron should be individualised in each patient. The method of anaesthesia and the expected duration of surgery, the method of sedation and the expected duration of mechanical ventilation, the possible interaction with other drugs that are administered concomitantly, and the condition of the patient should be taken into account when determining the dose.

The use of an appropriate neuromuscular monitoring technique is recommended for the evaluation of neuromuscular block and recovery.

Inhalational anaesthetics do potentiate the neuromuscular blocking effects of Esmeron. This potentiation however, becomes clinically relevant in the course of anaesthesia, when the volatile agents have reached the tissue concentrations required for this interaction. Consequently, adjustments with Esmeron should be made by administering smaller maintenance doses at less frequent intervals or by using lower infusion rates of Esmeron during long lasting procedures (longer than 1 hour) under inhalational anaesthesia In adult patients the following dosage recommendations may serve as a general guideline for tracheal intubation and muscle relaxation for short to long lasting surgical procedures and for use in the intensive care unit.

Surgical Procedures

Tracheal intubation

The standard intubating dose during routine anaesthesia is 0.6 mg/kg rocuronium bromide, after which adequate intubation conditions are established within 60 seconds in nearly all patients. A dose of 1.0 mg/kg rocuronium bromide is recommended for facilitating tracheal intubation conditions during rapid sequence induction of anaesthesia, after which adequate intubation conditions are established within 60 seconds in nearly all patients. If a dose of 0.6 mg/kg rocuronium bromide is used for rapid sequence induction of anaesthesia, it is recommended to intubate the patient 90 seconds after administration of rocuronium bromide.

Higher doses

Should there be reason for selection of larger doses in individual patients, initial doses up to 2 mg/kg rocuronium bromide have been administered during surgery without adverse cardiovascular effects being noted.

Maintenance dosing

The recommended maintenance dose is 0.15 mg/kg rocuronium bromide; in the case of long-term inhalational anaesthesia this should be reduced to 0.075-0.1 mg/kg rocuronium bromide. The maintenance doses should best be given when twitch height has recovered to 25% of control twitch height, or when 2 to 3 responses to train of four stimulation are present.

Continuous infusion

If rocuronium bromide is administered by continuous infusion, it is recommended to give a loading dose of 0.6 mg/kg rocuronium bromide and, when neuromuscular block starts to recover, to start administration by infusion. The infusion rate should be adjusted to maintain twitch response at 10% of control twitch height or to maintain 1 to 2 responses to train of four stimulation.

In adults under intravenous anaesthesia, the infusion rate required to maintain neuromuscular block at this level ranges from 0.3-0.6 mg/kg/h (300-600 micrograms/kg/h) and under inhalational anaesthesia the infusion rate ranges from 0.3-0.4 mg/kg/h. Continuous monitoring of neuromuscular block is essential since infusion rate requirements vary from patient to patient and with the anaesthetic method used.

Paediatric population

For neonates (0-27 days), infants (28 days - 23 months), children (2-11 years) and adolescents (12-17 years) the recommended intubation dose during routine anaesthesia and maintenance dose are similar to those in adults.

For continuous infusion in paediatrics, the infusion rates, with the exception of children (2-11 years), are the same as for adults. For children aged 2-11 years higher infusion rates might be necessary.

Thus, for children (2-11 years) the same initial infusion rates as for adults are recommended and then this should be adjusted to maintain twitch response at 10% of control twitch height or to maintain 1 or 2 responses to train of four stimulation during the procedure.

The experience with rocuronium bromide in rapid sequence induction in paediatric patients is limited. Rocuronium bromide is therefore not recommended for facilitating tracheal intubation conditions during rapid sequence induction in paediatric patients.

Geriatric patients and patients with hepatic and/or biliary tract disease and/or renal failure

The standard intubation dose for geriatric patients and patients with hepatic and/or biliary tract disease and/or renal failure during routine anaesthesia is 0.6 mg/kg rocuronium bromide. A dose of 0.6 mg/kg should be considered for rapid sequence induction of anaesthesia in patients in which a prolonged duration of action is expected. Regardless of the anaesthetic technique used, the recommended maintenance dose for these patients is 0.075-0.1 mg/kg rocuronium bromide, and the recommended infusion rate is 0.3-0.4 mg/kg/h

Overweight and obese patients

When used in overweight or obese patients (defined as patients with a body weight of 30% or more above ideal body weight) doses should be reduced taking into account ideal body weight.

Intensive Care Procedures

Tracheal intubation

For tracheal intubation, the same doses should be used as described above under surgical procedures. <u>Maintenance dosing</u>

The use of an initial loading dose of 0.6 mg/kg rocuronium bromide is recommended, followed by a continuous infusion as soon as twitch height recovers to 10% or upon reappearance of 1 to 2 twitches to train of four stimulation. Dosage should always be titrated to effect in the individual patient. The recommended initial infusion rate for the maintenance of a neuromuscular block of 80-90% (1 to 2 twitches to TOF stimulation) in adult patients is 0.3-0.6 mg/kg/h during the first hour of administration, which will need to be decreased during the following 6-12 hours, according to the individual response. Thereafter, individual dose requirements remain relatively constant.

A large between patient variability in hourly infusion rates has been found in controlled clinical studies, with mean hourly infusion rates ranging from 0.2-0.5 mg/kg/h depending on nature and extent of organ failure(s), concomitant medication and individual patient characteristics. To provide optimal individual patient control, monitoring of neuromuscular transmission is strongly recommended. Administration up to 7 days has been investigated.

Special populations

There are not data on safety and efficacy, the use of Esmeron for the facilitation of mechanical ventilation in the intensive care in paediatric and geriatric patients. For this reason, it is not recommended in these patients.

Method of administration

Esmeron is administered intravenously either as a bolus injection or as a continuous infusion

Contraindications

Hypersensitivity to rocuronium or to the bromide ion or to any of the excipients.

Special warnings and precautions for use

It is not recommended to blend Esmeron with medicinal products whose compatibility is not demonstrated. However, if you are sharing the same route of administration, caution should be exercised and some recommendations should be followed.

Since Esmeron causes paralysis of the respiratory muscles, ventilatory support is mandatory for patients treated with this drug until adequate spontaneous respiration is restored. As with all neuromuscular blocking agents, it is important to anticipate intubation difficulties, particularly when used as part of a rapid sequence induction technique. In case of intubation difficulties resulting in a need for immediate reversal of a rocuronium induced neuromuscular block, the use of sugammadex should be considered.

As with other neuromuscular blocking agents, residual neuromuscular blockade has been reported for Esmeron. In order to prevent complications resulting from residual neuromuscular blockade, it is recommended to extubate only after the patient has recovered sufficiently from neuromuscular block. Geriatric patients (65 years or older) may be at increased risk for residual neuromuscular block. Other factors which could cause residual neuromuscular blockade after extubation in the post-operative phase (such as drug interactions or patient condition) should also be considered. If not used as part of standard clinical practice, the use of a reversal agent (such as sugammadex or acetylcholinesterase inhibitors) should be considered, especially in those cases where residual neuromuscular blockade is more likely to occur.

Anaphylactic reactions can occur following the administration of neuromuscular blocking agents. Precautions for treating such reactions should always be taken. Particularly in the case of previous anaphylactic reactions to neuromuscular blocking agents, special precautions should be taken since allergic cross-reactivity to neuromuscular blocking agents has been reported.

In general, following long term use of neuromuscular blocking agents in the ICU, prolonged paralysis and/or skeletal muscle weakness has been noted. In order to help preclude possible prolongation of neuromuscular block and/or overdosage it is essential that neuromuscular transmission is monitored. In addition, patients should receive adequate analgesia and sedation. Furthermore, neuromuscular blocking agents should be titrated to effect in the individual patients by or under supervision of experienced clinicians who are familiar with their actions and with appropriate neuromuscular monitoring techniques.

Myopathy after long term administration of other non-depolarising neuromuscular blocking agents in the ICU in combination with corticosteroid therapy has been reported regularly. Therefore, for patients receiving both neuromuscular blocking agents and corticosteroids, the period of use of the neuromuscular blocking agent should be limited as much as possible.

If suxamethonium (succinylcholine) is used for intubation, the administration of Esmeron should be delayed until the patient has clinically recovered from the neuromuscular block induced by suxamethonium.

The following conditions may influence the pharmacokinetics and/or pharmacodynamics of Esmeron:

Hepatic and/or biliary tract disease and renal failure

Because rocuronium is excreted in urine and bile, it should be used with caution in patients with clinically significant hepatic and/or biliary diseases and/or renal failure. In these patient groups prolongation of action has been observed with doses of 0.6 mg/kg rocuronium bromide.

Prolonged circulation time

Conditions associated with prolonged circulation time such as cardiovascular disease, old age and oedematous state resulting in an increased volume of distribution, may contribute to a slower onset of action. The duration of action may also be prolonged due to a reduced plasma clearance. Neuromuscular disease

Like other neuromuscular blocking agents, Esmeron should be used with extreme caution in patients with a neuromuscular disease or after poliomyelitis since the response to neuromuscular blocking agents may be considerably altered in these cases. The magnitude and direction of this alteration may vary widely. In patients with myasthenia gravis or with the myasthenic (Eaton-Lambert) syndrome, small doses of Esmeron may have profound effects and Esmeron should be titrated to the response.

<u>Hypothermia</u>

In surgery under hypothermic conditions, the neuromuscular blocking effect of Esmeron is increased and the duration prolonged.

<u>Obesity</u>

Like other neuromuscular blocking agents, Esmeron may exhibit a prolonged duration and a prolonged spontaneous recovery in obese patients when the administered doses are calculated on actual body weight.

Burns

Patients with burns are known to develop resistance to non-depolarising neuromuscular blocking agents. It is recommended that the dose is titrated to response.

Conditions which may increase the effects of Esmeron

Hypokalaemia (e.g. after severe vomiting, diarrhoea and diuretic therapy), hypermagnesaemia, hypocalcaemia (after massive transfusions), hypoproteinaemia, dehydration, acidosis, hypercapnia, cachexia.

Severe electrolyte disturbances altered blood pH or dehydration should therefore be corrected when possible.

Sodium

This medicine contains less than 23mg of sodium (1mmol) per vial; this is essentially "free of Sodium".

Effect of other drugs on Esmeron

Increased effect:

- Halogenated volatile anaesthetics potentiate the neuromuscular block of Esmeron. The effect only becomes apparent with maintenance dosing. Reversal of the block with acetylcholinesterase inhibitors could also be inhibited.
- After intubation with suxamethonium.
- Long-term concomitant use of corticosteroids and Esmeron in the ICU may result in prolonged duration of neuromuscular block or myopathy
- Other drugs:
 - antibiotics: aminoglycoside, lincosamide and polypeptide antibiotics, acylaminopenicillin antibiotics.
 - o diuretics, quinidine and its isomer quinine, magnesium salts, calcium channel blocking agents, lithium salts, local anaesthetics (lidocaine i.v, bupivacaine epidural) and acute administration of phenytoin or β-blocking agents.

Fertility, Pregnancy and lactation

Pregnancy

For rocuronium bromide, no clinical data on exposed pregnancies are available. Animal studies do not indicate direct or indirect harmful effects with respect to pregnancy, embryonal/foetal development, parturition or postnatal development. Caution should be exercised when prescribing Esmeron to pregnant women.

Caesarean section

In patients undergoing Caesarean section, Esmeron can be used as part of a rapid sequence induction technique, provided no intubation difficulties are anticipated and a sufficient dose of anaesthetic agent is administered or following suxamethonium (succinylcholine) facilitated intubation. Esmeron, administered in doses of 0.6 mg/kg, has been shown to be safe in parturients undergoing cesarean. This dose has been shown to be safe in parturients undergoing Caesarean section. Esmeron does not affect Apgar score, foetal muscle tone or cardiorespiratory adaptation. From umbilical cord blood sampling it is apparent that only limited placental transfer of rocuronium bromide occurs which does not lead to the observation of clinical adverse effects in the newborn.

Note 1: doses of 1.0 mg/kg have been investigated during rapid sequence induction of anaesthesia, but not in Caesarean section patients. Therefore, only a dose of 0.6 mg/kg is recommended in this patient group.

Note 2: Reversal of neuromuscular block induced by neuromuscular blocking agents may be inhibited or unsatisfactory in patients receiving magnesium salts for toxemia of pregnancy because magnesium salts enhance neuromuscular blockade. Therefore, in these patients the dosage of Esmeron should be reduced and be titrated to twitch response.

Breast-feeding

It is unknown whether rocuronium bromide is excreted in human breast milk. Esmeron should be given to lactating women only when the attending physician decides that the benefits outweigh the risks.

Effects on ability to drive and use machines

Since Esmeron is used as an adjunct to general anaesthesia, the usual precautionary measures after a general anaesthesia should be taken for ambulatory patients.

Undesirable effects

Summary of the safety profile

The most commonly occurring adverse drug reactions include injection site pain/reaction, changes in vital signs and prolonged neuromuscular block. The most frequently reported serious adverse drug reactions during post-marketing surveillance is 'anaphylactic and anaphylactoid reactions' and associated symptoms.

Anaphylaxis

Although very rare, severe anaphylactic reactions to neuromuscular blocking agents, including Esmeron, have been reported. Anaphylactic/anaphylactoid reactions are: bronchospasm, cardiovascular changes (e.g. hypotension, tachycardia, circulatory collapse – shock), and cutaneous changes (e.g. angioedema, urticaria). These reactions have, in some cases, been fatal. Due to the possible severity of these reactions, one should always assume they may occur and take the necessary precautions.

Since neuromuscular blocking agents are known to be capable of inducing histamine release both locally at the site of injection and systemically, the possible occurrence of itching and erythematous reaction at the site of injection and/or generalised histaminoid (anaphylactoid) reactions (see also under anaphylactic reactions above) should always be taken into consideration when administering these drugs.

Prolonged neuromuscular block

The most frequent adverse reaction to nondepolarising blocking agents as a class consists of an extension of the drug's pharmacological action beyond the time period needed. This may vary from skeletal muscle weakness to profound and prolonged skeletal muscle paralysis resulting in respiratory insufficiency or apnea.

Myopathy

Myopathy has been reported after the use of various neuromuscular blocking agents in the ICU in combination with corticosteroids.

Local injection site reactions

During rapid sequence induction of anaesthesia, pain on injection has been reported, especially when the patient has not yet completely lost consciousness and particularly when propofol is used as the induction agent. In clinical studies, pain on injection has been noted in 16% of the patients who underwent rapid sequence induction of anaesthesia with propofol and in less than 0.5% of the patients who underwent rapid sequence induction of anaesthesia with fentanyl and thiopental.

Paediatric population

A meta-analysis of 11 clinical studies in paediatric patients (n=704) with rocuronium bromide (up to 1 mg/kg) showed that tachycardia was identified as adverse drug reaction with a frequency of 1.4%.

Overdose

In the event of overdosage and prolonged neuromuscular block, the patient should continue to receive ventilatory support and sedation. There are two options for the reversal of neuromuscular block: (1) In adults, sugammadex can be used for reversal of intense (profound) and deep block. The dose of sugammadex to be administered depends on the level of neuromuscular block. (2) An acetylcholinesterase inhibitor (e.g. neostigmine, edrophonium, pyridostigmine) or sugammadex can be used once spontaneous recovery starts and should be administered in adequate doses. When administration of an acetylcholinesterase inhibiting agent fails to reverse the neuromuscular effects of Esmeron, ventilation must be continued until spontaneous breathing is restored. Repeated dosage of an acetylcholinesterase inhibitor can be dangerous.